Notes to the Editor

- 13 Brodskii, A. I., Fumenko, A. S., Abramova, T. M., Dar'Yeva, E.P. Galina, A. A., Furman, Y. G., Kotorlenko, L. A. and Gardenina, A. P. *Polym. Sci. USSR* 1965, 7, 124
- 14 Kurilenko, A. I., Glukhor, V. I. Dokl. Acad. Nauk. SSR 1966, 166, No. 4, 901
- 15 Whiffen D. H. and Abraham, R. J. Trans. Faraday Soc. 1958, 54, 1291
- 16 Bamford, C. H., Barb, W. G., Jenkins, A. D., Onyon, P. F. 'The Kinetics of Vinyl Polymerization by Radical Mechanisms', Butterworths, London, 1958
- 17 Meares, P. 'Diffusion in Polymers' (Ed. J. Crank and G. S. Park) Academic, London, Ch 10 (1968)
- 18 Schulz, G. V. Z. Phys. Chem. 1956, 8, 284
- 19 Kachan, A. A., Mertvichenko, Y. F. Vysokomol Soedin 1967,

A9 1424

- 20 Korus, R. and O'Driscoll, K. F. The Polymer Handbook (Eds J. Brandrup, E. H. Immergut), 2nd Edition, Wiley, New York, Section II-45 (1975)
- 21 Guthrie, J. T., Huglin, M. B. and Phillips, G. O. J. Polym. Sci. (C) 1972, 37, 205
- 22 Guthrie, J. T., Huglin, M. B. and Phillips, G. O. J. Appl. Polym. Sci. 1972, 16, 1017
- North, A. M. Progress in High Polymers (Ed. J. C. Robb and F. W. Peaker) Vol 2, Heywood, London, (1968)
 Guthrie, J. T., Huglin, M. B. and Phillips, G. O. *Polymer*
- 1977, 18, 521 25 Hayden, P. and Melville, H. W. J. Polym. Sci. 1960, 63, 201
- 26 Zimmerman, J. J. Polym. Sci. 1960. 44, 107

The effect of swelling on the longitudinal acoustic mode in crystalline α,ω -methoxy-poly(ethylene oxide)

J. AI Kafaji, G. A. Pape, C. Booth and the late I. W. Shepherd Departments of Chemistry and Physics, University of Manchester, Manchester, M13 9PL, UK (Received 2 March 1979)

Low molecular weight poly(ethylene oxide) crystallizes into well defined layer structures. Raman scattering from the longitudinal acoustic mode (LAM) of vibration of the lamellae is readily detected 1-3. The experimental evidence 1-6favours a structure in which crystalline and non-crystalline layers alternate. It is possible to swell the non-crystalline layers with low molecular weight liquids, and oligomers of ethylene oxide have been used for this purpose^{2,3,7}. For α, ω hydroxy-poly(ethylene oxide) of molecular weight 2000 g mol⁻¹ swollen with α, ω -hydroxy-oligomers of various molecular weights less than $\overline{M}_n = 600$ g mol⁻¹, it is found^{2,3} that the LAM frequencies vary systematically with the lamella spacing $(l_x = \text{thickness of crystalline plus non-}$ crystalline layer) determined by small-angle X-ray scattering (SAXS). These results are given in Figures 1(a) and 2(a), where the hydroxy ended samples are denoted by molecular weight and suffix H. We plot $v_1 l_x$ and v_3/v_1 against l_x (v_1 is the frequency of the LAM fundamental and v_3 that of the third overtone). For the ideal case of crystalline lamellae vibrating independently of the non-crystalline layer, $v_1 l_x$ would increase with l_x and v_3/v_1 would be constant and equal to 3. Our results show a considerable effect of the noncrystalline layer on the LAM.

For the α, ω -hydroxy systems the effect of swelling is independent of the molecular weights of the oligomers studied ($\dot{M} = 106$ to $\bar{M}_n = 600$: see Figures 1 and 2). However the liquid properties of α, ω -hydroxy-poly(ethylene oxide) may be insensitive to molecular weight. For example^{8,9} the liquid density of α, ω -hydroxy-oligomers of ethylene oxide is constant at 1.12 g cm⁻³ (20°C). This is in contrast to the liquid densities of α, ω -methoxy-oligomers which increase from 0.94 g cm⁻³ (M = 134 g mol⁻¹) to 1.08 g cm⁻³ ($\bar{M}_n = 600$ g mol⁻¹) and to 1.12 g cm⁻³ only in the high molecular weight limit of extrapolation. Hydrogen bonding, principally of hydroxy to ether oxygen, provides a rationalization of this effect. Consideration of this point prompted us to reinvestigate the effect of molecular weight of the swelling agent on the LAM under conditions where hydrogen bonding is absent.

0032-3861/79/060778-02\$02.00 © 1979 IPC Business Press

Samples of α, ω -hydroxy-poly(ethylene oxide) of molecular weights \overline{M}_n = 2000, 600 and 200 g mol⁻¹, obtained from various commercial sources, were methoxylated by the procedure described elsewhere⁹. Methoxylated samples are denoted by the original molecular weight with suffix M. Conversion of hydroxy to methoxy was better than 98%. Molecular weight distributions were checked by gel permeation chromatography and were essentially unchanged by the methoxylation process. The crystallizable α, ω -methoxypoly(ethylene oxide) 2000M had a narrow molecular weight distribution, $\overline{M}_w/\overline{M}_n = 1.03$. Dimethyldigol (M =134 g mol⁻¹) was SynchemicA grade (Hopkins and Williams) used without further purification. Mixtures were prepared by melting at 70°C and shaking several times over a period of 30 min. Crystallization was at 25°C. LAM frequencies and lamella spacings were determined by laser Raman spec-

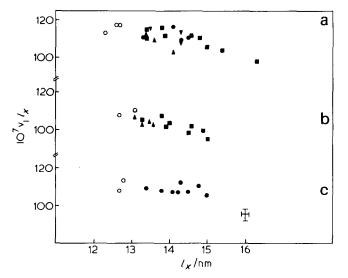


Figure 1 The variation of $\nu_1 I_X$ with I_X for mixtures of: (a) 2000H (\bigcirc) with 106H (\bigcirc), 200H (\blacksquare), 400H (\bigtriangledown) and 600H (\blacktriangle); (b) 2000M (\bigcirc) with 200M (\blacksquare) and 600M (\bigstar); (c) 2000M (\bigcirc) with 134M (\bigcirc). The experimental error is indicated

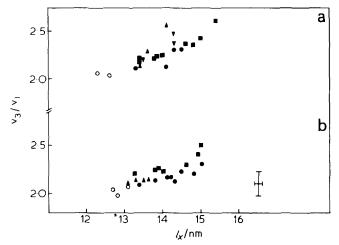


Figure 2 The variation of ν_3/ν_1 with l_X for mixtures of: (a) 2000H (\bigcirc) with 106H (\bigcirc), 200H (\blacksquare), 400H (\bigtriangledown) and 600H (\clubsuit); (b) 2000M (\bigcirc) with 134M (\bigcirc), 200M (\blacksquare) and 600M (\bigstar). The experimental error is indicated

Table 1 Lamella spacing (I_X) and LAM fundamental $(\bar{\nu}_1)$ and third overtone $(\bar{\nu}_3)$ for poly(ethylene oxide) 2000

	α,ω-hydroxy			α,ω-methoxy		
Sample	/ _x /nm	$\bar{\nu}_1/\text{cm}^{-1}$	$\bar{\nu}_3/\text{cm}^{-1}$	l _x /nm	$\overline{v}_1/\text{cm}^{-1}$	$\bar{\nu}_3$ /cm ⁻¹
1	12.6	9.3	19.0	13.1	8.4	19.0
2	12.3	9.2	19.0	12.8	8.8	19.0
3	12.3	9.2	19.0	12.7	8.5	19.0

troscopy and small-angle X-ray scattering as described earlier^{1,2}.

The experimental results are given in Tables 1 and 2. The estimated experimental errors are ± 0.2 nm (l_x) , ± 0.2 cm⁻¹ $(\bar{\nu}_1)$ and $\pm 1 \text{ cm}^{-1}(\bar{\nu}_3)$. We have investigated 3 different samples of 2000M: one set of results for 2000M (1)/200M has been published earlier². Methoxylation has the effect of increasing l_x by about 0.5 nm and decreasing $\bar{\nu}_1$ by about 0.6 cm⁻¹ in comparison with the α, ω -hydroxy precursor (see Table 1). In Figures 1 (b,c) and 2(b) the product $v_1 l_x$ and the quotient ν_3/ν_1 are plotted against l_x . The results for 2000M/200M and 2000M/600M are indistinguishable and are comparable in most respects with those found for the α,ω hydroxy systems. The variation of $\nu_1 l_x$ with l_x (but not v_3/v_1 with l_x) is less marked for 2000M/134M than for the other systems. We infer that swelling with oligomers of molecular weight 200 g mol⁻¹ or more suffices, in this experiment, to model the limit of high polymer in the noncrystalline layer.

We have used^{2,3} the composite rod model with free ends¹⁰ to rationalize our results for α, ω -hydroxy-poly (ethylene oxide). Clearly the same model can be used for α, ω -methoxy-poly(ethylene oxide). The fit to the data² requires a degree of crystallinity of the crystallizable poly(ethylene oxide) 2000 of 70% and an elastic modulus ratio (E_a/E_c) near 0.1. However the crystalline elastic modulus needed for the fit is $E_c \simeq 9 \times 10^{10}$ N ½m⁻² which is much larger than the value of 10^{10} N ½m⁻² found by lattice extension measurements¹¹. Recent theoretical work of Hsu *et al.*¹² permits prediction of the LAM frequencies of composite rods with perturbing forces at the ends. A uniform rod of elastic modulus 1.0 × 10^{10} N ½m⁻² with fixed ends (very large forces) would have $\nu_1 l_x = 96 \times 10^{-7}$ ($\rho = 1.21 \times 10^3$ kg m⁻³) compared to an

Table 2 Lamella spacing (I_{χ}) and LAM fundamental $(\tilde{\nu}_1)$ and third overtone (ν_3) for α, ω -methoxy-poly(ethylene oxide) 2000 swollen by different weight fractions of low molecular weight oligomers

Weight fraction	l _x /nm	$\bar{\nu}_1/\text{cm}^{-1}$	$\bar{\nu}_3/\text{cm}^{-1}$	
2000M(2)/134M			·····	
0.08	14.3	7.8	18.0	
0.14	14.5	7.4	18.0	
0.18	14.8	7.4	17.8	
0.20	15.0	7.0	17.5	
2000M(3)/134M				
0.07	13.4	8.1	18.5	
0.12	13.8	7.8	18.2	
0.16	14.1	7.6	18.0	
0.19	14.2	7.5	17.8	
2000M(3)/200M				
0.04	13.3	7.9	19.0	
0.09	14.0	7.4	18.0	
0.15	14.6	7.0	17.5	
0.20	14.9	6.7	17.5	
2000M(3)/600M				
0.06	13.1	8.2	18.4	
0.12	13.3	7.9	18.4	
0.18	13.5	7.7	18.0	
0.22	13.6	7.6	17.8	

experimental value of about 110×10^{-7} . It is not obvious why a rod with fixed ends should model the behaviour of our polymers. It may be that adjacent lamellae in low molecular weight poly(ethylene oxide) are coupled¹², though this is not found for other systems¹³. The possibility of a detailed theoretical¹² fit of our results, incorporating an acceptable value of E_c , is under consideration.

ACKNOWLEDGEMENTS

We would like to thank Mr D. Farnsworth, Mr D J. Roy and Mr J. J. Smith for help with the experimental work, and the Science Research Council for financial support.

REFERENCES

- 1 Hartley, A. J., Leung, Y-K., Booth, C. and Shepherd, I. W. Polymer 1976, 17, 354
- 2 Hartley, A. J., Leung, Y-K., McMahon, J., Booth, C. and Shepherd, I. W. Polymer 1977, 18, 366
- 3 Edward, J. M., Mulley, R. D., Pape, G. A., Booth, C. and Shepherd, I. W. Polymer 1977, 18, 1190
- 4 Arlie, J. P., Spegt, P. A. and Skoulios, A. E. Makromol. Chem. 1967, 99, 106; 1967, 104, 212
- 5 Spegt, P. A. Makromol. Chem. 1970, 140, 167
- 6 Beech, D. R., Booth, C., Dodgson, D. V., Sharpe, R. R. and Waring, J. R. S. Polymer 1972, 13, 73
- 7 Terrisse, J., Mathis, A. and Skoulios, A. E. *Makromol. Chem.* 1968, 119, 219
- 8 Becht, J., Hellwege, K. H. and Knappe, W. Kolloid-Zeits. 1967, 216/217, 150
- 9 Cooper, D. R. and Booth, C. Polymer 1977, 18, 164
 10 Olf, H. G., Peterlin, A. and Peticolas, W. L. J. Polym. Sci.
- (Polym. Phys. Edn.) 1974, 12, 359 11 Sakurada, F., Ito, T. and Nakamae, K. J. Polym.Sci. (C) 1966,
- 15, 75 12, 14, 15, 16, 1, and Nakamae, K. J. Polym.Sci. (C) 1960,
- 12 Hsu, S. L., Ford, G. W. and Krimm, S. J. Polym. Sci. (Polym. Phys. Edn) 1977, 15, 1769
- 13 Hsu, S. L. and Krimm, S. J. Appl. Phys. 1977, 48, 4013